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Some Elementary Theorems about Divisibility of 0-Cycles

on Abelian Varieties Defined over Finite Fields

Hélène Esnault

1 Introduction

Let X be an abelian variety defined over a field k and let L ∈ Pic(X). Then the Riemann-

Roch theorem implies that the degree of 0-cycle Lg is divisible by g!. An important ex-

ample is when X is the product of an abelian variety with its dual A × A∨, where A is

of dimension n, thus g = 2n, and L is the Poincaré bundle, normalized so as to be trivial

along the two 0-sections. In this case, the highest product Lg is just g! times the origin, as

a 0-cycle in CH0(A × A∨). In this article we investigate the question of g!-divisibility of

the 0-cycle Lg in CH0(X). We show that already for g = 2, there are counterexamples (see

Remark 4.1). This answers negatively a question by B. Kahn (personal communications):

there are no divided powers in the Chow groups of abelian varieties, not even in their

étale motivic cohomology. Indeed, his question was the motivation to study divisibility

of the 0-cycle Lg. Our method consists in relating this divisibility for g = 2 to the exis-

tence of theta characteristics on smooth projective curves over the given field. Over finite

fields, Serre’s theorem asserts that there are always theta characteristics. We derive from

this that if g = 2n and the field is finite, one always has 2-divisibility (see Theorem 2.1

and Remark 4.3). Thus, the 2-divisibility is an arithmetic statement (see Remark 4.2). In

order to find a nontrivial class of invertible sheaves L for which one has g!-divisibility,

one needs more arithmetic. In Theorem 3.1 we show that a principal polarization L of

geometric origin has the strong property that Lg is g!-divisible as a 0-cycle. Aside of

Serre’s theorem mentioned above, the proof relies on (an adaption of) Mattuck’s results
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930 Hélène Esnault

on geometric polarization (see [4]), on abelian class field theory by Kato and Saito (see

[3]), and on Bloch’s theorem on 0-cycles on abelian varieties (see [2]). Perhaps it gives

some hope that g!-divisibility is true in general over a finite field.

2 2-divisibility

Theorem 2.1. Let X be an abelian variety of dimension g = 2n defined over a finite field.

Let L ∈ Pic(X) be a line bundle. Then the 0-cycle Lg is divisible by 2 in the Chow group of

0-cycles of X. �

Proof. If A is a sufficiently ample line bundle, then L ⊗ A = B is very ample as well. One

has Lg ≡ Ag + Bgmod 2CH0(X), thus one may assume that L is as ample as necessary.

For L sufficiently ample, there is a finite field extension k ′ ⊃ k of odd degree, such that

the intersection C ⊂ X ×k k ′ of (g − 1) linear sections of L ×k k ′ in general position is

smooth. One has ωC = (L ×k k ′)⊗(g−1)|C ≡ (L ⊗k k ′)|Cmod 2Pic(C), thus, via the Gysin

homomorphism Pic(C) ι−→ CH0(X ×k k ′) one has (L ×k k ′)g ≡ ι∗(ωC) mod 2CH0(X ×k k ′).

On the other hand, Serre’s theorem [1, Remark 2, page 61] asserts that a smooth curve

over a finite field admits a theta characteristic, that is, ωC is 2-divisible in Pic(C). This

shows that (L ×k k ′)g ∈ 2CH0(X ×k k ′), thus by projection formula, since k ′ ⊃ k is odd,

then Lg ∈ 2CH0(X) as well. �

3 g!-divisibility

Let C be a smooth projective curve of genus g defined over a finite field k = Fq. Then C

carries a 0-cycle p of degree 1. Let J be the Jacobian of C. The rest of this section would

be trivial if g ≤ 1, thus we assume that g ≥ 2. We consider the cycle map

ψp : C −→ J, y �−→ OC
(
y − deg(y) · p). (3.1)

This cycle map induces a birational morphism which we still denote by ψp,

ψp : Symg(C) −→ J,
(
x1, . . . , xg

) �−→ ⊗gi=1ψp
(
xi

)
. (3.2)

In particular, writing p =
∑
imipi = q1−q2, with qi effective, one has deg(q1)−deg(q2) =∑

imi deg(pi) = 1. We denote by π : Cg → Symg(C) the quotient map. It defines the

divisor

Dp =
∑
i

mi
(
ψp ◦ π

)
∗
(
Cg−1 × pi

)
, Lp = OJ

(
Dp

) ∈ Pic(J). (3.3)
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Divisibility 931

We know that Lp is a principal polarization, thus the 0-cycle Lgp has degree g!. The pur-

pose of this section is to show the following theorem.

Theorem 3.1. The 0-cycle Lgp in the Chow group CH0(J) of 0-cycles of J is divisible by g!

in CH0(J), that is, there is a 0-cycle ξ ∈ CH0(J) of degree 1with Lgp = g! · ξ ∈ CH0(J). �

Proof. Since the 0-cycle p of degree 1 will not change during the proof, we simplify the

notation and set ψ = ψp, D = Dp, and L = Lp. We consider the Poincaré bundle P =

p∗1L⊗ p∗2L⊗ µ∗L−1 ∈ Pic(J× J), where µ : J× J → J, µ(x, y) = x + y. Via the cycle map

ι∗ : Alb(C) = Pic(C)0 = Pic(J)0
ψ∗−−−→ CH0(J)deg=0 h−−→ J(k), (3.4)

where h is the Albanese mapping of J, one defines

ι∗ωC
(

− 2(g − 1)p
)

= y ∈ J(k). (3.5)

We now adapt [4, Section 6] to the situation where p is not necessarily a k-rational point

of C, but only a 0-cycle of degree 1. One defines the involution

δ : J −→ J, x �−→ −x + y = τy ◦ (−1)∗(x) = (−1)∗ ◦ τ−y, (3.6)

where τy is the translation by ywhile (−1) is the multiplication by −1. We set

� = ψ∗L, P = (ψ× 1)∗P = p∗1�⊗ p∗2L⊗ (ψ× 1)∗µ∗L−1. (3.7)

As in [5, page 249], for d > 2g − 2, the Riemann-Roch theorem asserts that

Ed := p2∗
(
P ⊗ p∗1OC(dp)

)
= Rp2∗

(
P ⊗ p∗1OC(dp)

)
(3.8)

is a vector bundle. One has

⊗iP|⊗mi

pi×J = P|C×{0} = OJ. (3.9)

This implies that for any natural number f > 0, one has

Pfq1×J ⊗ P−1
fq2×J = P|C×{0} = OJ. (3.10)

For two natural numbers e > f > 0, one has the diagram

P ⊗ p∗1OC
(
(e − f)q1 − eq2

) fq1

fq2

P ⊗ p∗1OC(ep)

P ⊗ p∗1OC
(
(e − f)p

)
,

(3.11)
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932 Hélène Esnault

where the horizontal map is induced by OC → OC(fq1), and the vertical one by OC →
OC(fq2). Thus one has the following relation in K0(J):

Rp2∗
(
P ⊗ p∗1OC(ep)

)
− Rp2∗

(
P ⊗ p∗1OC

(
(e − f)p

))

= p2∗
(
P ⊗ p∗1OC

(
(e − f)p

)∣∣
fq2×J

)−1

⊗ p2∗
(
P ⊗ p∗1OC(ep)

∣∣
fq1×J

)

= 0 (by (3.10)).

(3.12)

For d > 2g − 2, we then have in the Grothendieck group K0(J),

p2∗
(
P ⊗ p∗1OC(dp)

)
+ R1p2∗

(
P ⊗ OC

(
(2g − 2 − d)p

))
= 0. (3.13)

On the other hand, one has

δ∗Ed = p2∗
(
P−1 ⊗ p∗1ωC

(
(d − 2g + 2)p

))
, (3.14)

and Serre duality implies that

δ∗
(
E∨
d

)
= R1p2∗

(
P ⊗ p∗1

(
O

(
(2g − 2 − d)p

)))
(3.15)

(see [5, page 249]). The involution δ acts on J, thus on the Chow groups of J. Thus (3.13)

and (3.15) imply that

δ∗c1
(
Ed

)
= c1

(
Ed

)
=: M, M2 = δ∗M2 = c2

(
Ed

)
+ δ∗c2

(
Ed

)
. (3.16)

Thus we have

Mg = M2 ·Mg−2 = Mg−2c2
(
Ed

)
+ δ∗Mg−2 · δ∗c2

(
Ed

)
= Z + δ∗Z (3.17)

for

Z := c2
(
Ed

) ·Mg−2 ∈ CH0(J), degZ = n, 2n = degMg. (3.18)

We set

Z ′ = Z − n{0} ∈ CH0(J)deg=0. (3.19)

By abelian class field theory for 0-cycles on varieties defined over finite fields, see

[3, Corollary, page 274], the Albanese mapping h is an isomorphism. This allows to iden-

tify explicitly δ∗ on CH0(J). Indeed, ifW ∈ CH0(J) has degree n, and if z ∈ J(k), then

h
(
τ∗z(W) − n{0}

)
= τ∗zh

(
W − n{0}

)
+ h

(
τ∗zn{0} − n{0}

)

= τ∗zh
(
W − n{0}

)
+ nz.

(3.20)
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Divisibility 933

On the other hand, Bloch’s theorem [2, Theorem 3.1] asserts that the second Pontryagin

product dies inCH0(J×kk̄),where k̄ is the algebraic closure of k, thus by class field theory

again [3, Proposition 9, page 274], it dies in CH0(X). Thus

τ∗za = a ∀a ∈ CH0(X)deg=0. (3.21)

Thus (3.20) and (3.21) imply that

h
(
τ∗z(W) − n{0}

)
= h

(
W − n{0}

)
+ nz. (3.22)

On the other hand,

h
(
(−1)∗W − n{0}

)
= −h

(
W − n{0}

)
. (3.23)

Thus, (3.17), (3.22), and (3.23) imply that

h
(
Mg − 2n{0}

)
= −ny. (3.24)

We now apply again Serre’s theorem [1, Remark 2, page 61], which asserts that over a

finite field, a smooth projective curve has a theta divisor. Thus,ωC(−(2g−2)p) ∈ 2Pic0(C)

and a fortiori, via the Gysin homomorphism ψ∗, one has

y = 2ξ0 ∈ CH0(J)deg=0 for some ξ0 ∈ CH0(J)deg=0. (3.25)

Thus (3.24), (3.25), and [3] imply that

Mg = 2n
(
{0} − ξ0

)
. (3.26)

It remains to compareM∨ and L. As a divisor, one hasM∨ ⊗k k̄ = {L ∈ Pic0(J)(k̄), Γ(C×k
k̄,L((g − 1)p)) �= 0}. ThusM∨ ⊗k k̄ = OJ×kk̄(D), as we know, both underlying divisors are

physically the same and they are both reduced. ThusM∨ = OJ(D)⊗L for some L ∈ Pic0(J)

which is torsion. On the other hand, the map J → Pic0(J), a �→ τ∗aOJ(D) ⊗ OJ(D)−1 is an

isomorphism over k̄, thus it is an isomorphism over k. This implies that M∨ = τ∗aOJ(D)

for some a ∈ J. Thus (3.26) implies that

Lg = 2nτ∗a
(
ξ0 − {0}

)
, 2n = g!. (3.27)

This finishes the proof. �
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934 Hélène Esnault

4 Remarks

Remark 4.1. B. Kahn asked whether étale motivic cohomology of abelian varieties has

divided powers. Theorem 2.1, read backwards, yields a negative answer. Let k be a field

and letC be a genus 2 curve defined over this field with the two properties that it carries a

0-cycle p of degree 1 and it does not have a theta characteristic. Let J be the Jacobian of C

and let ψp =: ψ : C → J be the cycle map assigned to the choice of p. Since the composite

map ι∗ : Alb(C) = Pic(C)0 = Pic(J)0
ψ∗−−→ CH0(J)deg=0 h−→ J(k) is an isomorphism, one

has that ι∗ωC(2(g − 1)p) ∈ J(k) is not 2-divisible. Thus, a fortiori, the class of the Gysin

image of ωC will not be 2-divisible in any cohomology which has the property that it

maps to étale cohomology and the kernel maps to the Albanese; for example, étale motivic

cohomology.

It remains to give a concrete curve. One could take for k the function field of the

fine moduli space of pointed genus 2 curves with some level over a given algebraically

closed field F. This has transcendence degree 3 over F and is of course very large. Here

is an example due to J.-P. Serre over the field k = C(t) of cohomological dimension 1: C

is defined by its hyperelliptic equation y2 = x6 − x − t. It has two rational points at ∞.

The Galois group of x6 − x − t is the symmetric group in six letters, which acts with two

orbits on the space of theta characteristics over k̄, one with six elements and the other

with ten.

Remark 4.2. This remark arose in discussions with E. Viehweg in view of Theorem 2.1. If

X is a product of curves X = C1 × · · · × Cg over a field k, then the Pic functor is quadratic

after Mumford, which means that a line bundle L on X is a sum of line bundles Lij coming

via pullback from only two factors (ij), i �= j. Thus the expansion of Lg will have two kinds

of summands. First it will have those of type Li1j1 · · · Ligjg with all pairs (ic, jc) being

different. The coefficient of such a summand is g!, thus this term is g!-divisible. Then

it will have those of type L2i1j1 · · · L2iaja · Lia+1ja+1
· · ·Lia+bja+b

with all pairs (ic, jc) being

different and 2a + b = g. The coefficient of such a summand is g!/2a. Thus g!-divisibility

of any Lg on a product of g curves splits into two kinds of divisibility. Over any field

k, geometry always forces (g!/2a)-divisibility for a = [g/2], where [c] means the integral

part of a real number c. On the other hand, let k be a field which has the property that any

curve has a theta characteristic (e.g., a finite field (see [1, Remark 2, page 61])). Then the

argument of Theorem 2.1 implies that if L ∈ Pic(C1 × C2), then L2 is 2-divisible. Indeed,

one reduces as in the proof of Theorem 2.1 to the case where L = O(Γ) for a smooth curve

Γ ⊂ C1×C2, and by the adjunction formula one has L2 = iΓ∗ωΓ−p∗1ωC1
·Γ−p∗2ωC2

·Γ ,where

pi : C1 × C2 → Ci are the projections and iΓ : Γ ↪→ C1 × C2 is the closed embedding. Thus

over such a field, Lg is always g!-divisible in CH0(C1 × · · · × Cg).
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Divisibility 935

Remark 4.3. The conclusion of Theorem 2.1 is of course true over any field k over which

any smooth projective curve has a theta characteristic.
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